Какое свойство маятника используются в часах

В этой статье мы попросили мастера ответить на вопрос: «Какое свойство маятника используются в часах?», а также дать полезные рекомендации для наших читателей. Что из этого получилось, читайте далее.

Изучение свойств маятника пустило свои корни в глубокую даль. Первыми приборами, в которых использовались эти свойства были часы. Период колебаний (вращений) практически не изменяется. Если сначала колебания происходят с очень большим отклонением, скажем на 80 от вертикали, то при затухании колебаний до 60, 40, 20 период уменьшится всего на несколько процентов, при уменьшении отклонений от 20 до едва заметного он изменится меньше чем на 1%. При отклонениях меньше 5 период останется неизменным с точностью до 0,05% Это свойство независимости маятника от амплитуды, называемое изохронность, и легло в основу механизма.

Самый старый шпиндельный маятник появился в 14 веке. Он имел форму коромысла с подвижными регулировочными грузами. Оно насаждалось на вал (шпиндель) с двумя паллетами(пластинами на концах). Палеты поочередно входили между зубцами спускового колеса, которое раскручивала опускающаяся гиря. Вращаясь, оно надавливало зубом на верхнюю паллету и поворачивало на пол-оборота шпиндель. Нижняя застревала между двумя зубцами и тормозила колесо. Затем цикл повторялся.

На смену шпиндельному маятнику пришел анкерный механизм, который своим внешним видом напоминал якорь. Он служит связующим звеном между маятником (балансиром) и спусковым колесом. В 1675 году Гюйленс предложил в качестве регулятора колебаний крутильный маятник — балансир со спиралью. Система Гюйленса до сих пор применяется в наручных часах и настольных механических часах. Балансир — колесо, к которому крепится тонкая спиральная пружина (волосок). Поворачиваясь, балансир качает анкер. Паллеты анкера из синтетического рубина поочередно входят между зубьями спускового колеса. За один период качания балансира колесо поворачивается на ширину одного зуба. При этом оно подталкивает скобу анкера и тот, поворачиваясь, подкручивает балансир.

В середине 17 века появилась минутная и секундная стрелка, что сразу отразилось на точности хода часов. Причина этому материал маятника (спирали), которая, расширяясь и сокращаясь при повышении, либо понижении температуры колеблется с разной частотой. Это приводит к ошибкам в расчете времени. Поэтому ученые изобрели особый материал, устойчивый к перепадам температуры — инвар (сплав железа и никеля). С его использованием погрешность за сутки не превышает и полсекунды.

В 30-ых годах 19 века были представлены первые попытки создать компактные часы, однако они появились лишь столетие спустя. Первыми изобрели электромеханические часы. Электрический ток проходил по контактам, управляя маятником и двигая стрелки. С появлением компактных батареек мир увидел электрические наручные часы, которые в своем строении имели балансир, а их электрическую цепь замыкали механическими контактами, более усовершенствованными моделями были часы на полупроводниковых и интегральных схемах. Чуть позже появились электромеханические часы с кварцевыми осцилляторами в качестве колебательных систем, погрешность которых была меньше двух секунд в сутки!

Еще одним шагом вперед стали полностью электронные часы. Основными составляющими являются электронная схема, цифровые индикаторы на жидких кристаллах. Это миниатюрные специализированные электронные вычислительные устройства (генератор, делители, формирователи, умножители электронных колебаний).

Отдельно хочется сказать про астрономические часы, которые используются при наблюдении за небесными светилами и хранения времени. Их погрешность составляет лишь 0,000000001 секунд в сутки. Еще меньшей погрешностью обладают молекулярные часы, в основе каких положена способность некоторых молекул поглощать электромагнитные колебания строго определенной частоты (например, атомы цезия 1с за 10000 лет). Но сверх точностью могут похвастаться квантовые часы, где используются электромагнитные колебания водородного квантового генератора и составляют погрешность в 1с за 100000 лет.

Водяные мы видели в телепередачах из форта Байяр, а песочные сплошь и рядом используются в практической жизни, хотя бы в физиотерапевтических кабинетах. Вставили, допустим, в ухо прогреватель и перевернули часы. Как пересыпается песок — конец процедуре.
Но заметим, что постоянно «идущих» песочных часов не может быть в принципе. Они, как говорят, дискретного действия. А человеку стали нужны часы, постоянно отмеряющие время. Хотя
бы для того, чтобы «сверять часы». Чтобы в разных домах и даже городах полдень и полночь наступали одновременно, а не вразнобой. И тогда вспомнили о маятнике, о том, что он имеет один и тот же период колебаний независимо от величины их размаха или амплитуды. Но при этом встают две проблемы: как поддерживать колебания маятника, чтобы он не остановился, и как складывать периоды колебаний, выдавая общее, суммарное время. Помните, в самом начале повествования о колебаниях мы упомянули медведя, толкающего подвешенный на веревке чурбан. Так вот, первую проблему этот медведь уже решил — толкая чурбан, он поддерживает незатухающие колебания маятника. И если бы этот медведь был ученым (или вместо него на дереве сидел бы человек с калькулятором) и считал бы каждое колебание, складывая их, и выдавал бы сумму, то это были бы самые настоящие маятниковые часы. Остается только заменить этого медведя механизмом.
Это было сделано уже в VI в. н. э., к которому относятся первые упоминания о механических часах. Но достоверные сведения о первых часах появились лишь в конце 900-х гг. (успели-таки сдать объект в первой тысячелетке!), когда французский монах Жербе (кстати, ставший в 999 г. папой Сильвестром Вторым) построил достаточно точные
механические часы с гирей (рис. 99). Часы постепенно улучшались и к 1300 г. появились во многих городах Европы. Заметим, что у таких часов стрелка была всего одна, и часто вместо стрелки вращался циферблат, а стрелка закреплялась неподвижно. В древней Москве, в частности, были именно такие башенные часы — с вращающимся циферблатом, причем, как писали, вращался он со страшным скрипом, так как его забывали смазывать.

Рис. 99. Средневековые механические часы с гирей
Маятник древних часов был поперечным — линейка с двумя грузами на концах связывалась с особой шестерней с острыми зубьями так, чтобы при одном колебании успевал проскакивать только один зубец. Этот же зубец толкал (как медведь!) маятник, не давая его колебаниям затухнуть. Таким образом скорость вращения этой шестерни непосредственно кинематически связывалась с колебаниями маятника, например, один оборот шестерни, содержащей десять зубьев, происходил за десять колебаний маятника. Если период колебаний был равен 1 секунде — то за 10 секунд. Оставалось только связать системой зубчатых колес эту шестерню со стрелкой, чтобы та вращалась в 4 320 раз медленнее, и дело сделано. Часовая стрелка или циферблат (как кому нравилось) совершали при этом полный оборот за 12 часов! Но это были часы не очень совершенные. Точность их хода сильно зависела от величины подвешенного груза, который и вращал шестерню, и толкал таким образом маятник. Восстанавливающая сила (загляните в пример с медведем!) зависела от массы груза, «смазанности» механизма и других причин, что делало часы неточными и ненадежными.
Изобретением настоящих, точных и надежных маятниковых часов мы обязаны Христиану Гюйгенсу, который создал их в 1656 г. Вся прелесть часов Гюйгенса была в том, что маятник совершал свои колебания под действием восстанавливающей силы, зависящей только от силы тяжести, то есть постоянной (для жителей Земли, разумеется). И, как мы знаем, даже подъем на горы и спуск в
шахты, а также изменение плотности воздуха из-за погоды почти не влияли на период колебаний такого маятника. Это был обычный маятник — груз, подвешенный на стержне с возможностью изменения длины его подвеса, чаще всего обычной гайки на резьбе, что нужно для точного регулирования периода колебаний.

Вся хитрость состояла в так называемом спусковом механизме, таком, который позволял бы сделать колебания маятника незатухающими, и в то же время почти не изменял бы периода его колебаний.
Спусковой механизм (рис. 100, а) состоит из спускового колеса 1, так или иначе подгруженного гирей 4 (на рисунке она свисает справа, подгружая колесо 1 по часовой стрелке), и анкера 2, связанного с маятником 3. Зубья колеса 1 толкают поочередно то левое, то правое плечо анкера 2, раскачивая маятник 3. При этом с каждым качанием проскакивает по одному зубу спускового колеса, делая таким образом частоту его вращения зависящей от периода колебаний маятника. Связать спусковое колесо со стрелками часов
w v u u V/
— часовой и новой, второй стрелкой — минутной было уже делом техники. Секундная стрелка появилась совсем в новое время, когда счет времени пошел на секунды. Наиболее точный ход часов — при малых амплитудах колебаний маятника, порядка 3 — 8 На рис. 100, б показаны усовершенствованные спусковое колесо и анкер реальных маятниковых часов. Видно, что в анкере закреплены по его концам так называемые палеты, изготовленные из закаленной стали или даже твердых камней, обычно агата или рубина. Длина палет регулируется так, чтобы они поочередно выходили из зацепления со спусковым колесом, и оставшаяся в зацеплении палета толкала анкер и весь маятник слева направо. Обратно же маятник возвращается сам.

Рис. 100. Спусковой механизм маятниковых часов:
а — общий вид: 1 — спусковое колесо; 2 — анкер; 3 — маятник; 4 — гиря; б — спусковой механизм усовершенствованного типа Всем хороши маятниковые часы — и точны, и несложны, но не переносят тряски и качки. Попробуйте, наклоните маятниковые часы вбок — и анкер перестает работать. Поэтому их особенно точно «выставляют» в вертикальное положение и закрепляют так. Что ж, для башенных, напольных, настенных часов маятник очень удобен. Но людям хотелось бы «носить» время с собой — иметь карманные или наручные часы. Маятник здесь неуместен, даже смешон. И еще одна проблема — точное время очень нужно морякам для определения координат корабля в открытом море. А маятниковые часы «болеют» морской болезнью — не выносят качки. Вот в первую очередь для морских дел и были созданы часы с балансирным (или балансовым) маятником. Мы уже говорили, что восстанавливающая сила может быть не только силой тяжести, но и силой упругости. Вот и был заменен маятник, фактически вращающийся на ограниченный угол в 3 — 8°, массивным кольцом-маховичком, поворачивающимся уже на 270— 300°. А так как в кольце этом, или балансе, силы тяжести уравновешены, в отличие от маятника, то в положение равновесия его приводила тоненькая спиральная пружинка, называемая волоском. Вот мы и получили устройство, изображенное на рис. 101, а. То же спусковое колесо 1, тот же анкер 2, но вместо маятника колеблется баланс 4, подпружиненный пружинкой- волоском 3. На рис. 101, б показана более усовершенствованная схема спускового механизма с балансом. Здесь палеты ударяют по несколько видоизмененным зубьям колеса и толкают баланс, подпружиненный волоском. Период колебаний баланса регулируется изменением длины закрепления этого волоска, что можно видеть, если снять крышку, например, с механического будильника. А кроме того, вместо громоздких гирь часы стали снабжаться энергией от компактной заводной пружины-двигателя.

Рис. 101. Спусковое устройство часов с балансом:
а — общий вид: 1 — спусковое колесо; 2 — анкер; 3 — пружинка — волосок; 4 — баланс; б — усовершенствованная схема спускового механизма с балансом
В результате получили механизм, изображенный в «развернутом виде» на рис. 102. Это современные механические часы, не уступающие своего места часам электронным. Одно время, в самом конце XX в., казалось, что механическим часам пора «на пенсию». Но оказалось, что они стали даже еще престижней электронных.
Особенно с самоподзаводом (очередным «вечным двигателем», работающим от движения руки), календарем и прочими удобствами.
Забегая вперед, скажем, что и в кварцевых, и в чисто электронных часах все равно «эталоном» времени являются колебания. Разница лишь в том, как эти колебания преобразуются и «выводятся» на стрелочный или цифровой индикатор.

Рис. 102. Механизм современных механических часов

Представьте себе некую механическую систему, которая состоит из некой материальной точки (тела), которая висит на нерастяжимой невесомой нити (при этом масса нити ничтожно мала по сравнению с массой тела). Вот такая механическая система и является маятником или осциллятором, как его еще называют. Впрочем, могут быть и другие виды такого устройства. Чем же математический маятник, осциллятор интересен для нас? Дело в том, что с его помощью можно проникнуть в суть многих интересных природных явлений в физике.

Формула периода колебания математического маятника впервые была открыта голландским ученым Гюйгенсом в далеком XVII веке. Будучи современником Исаака Ньютона, Гюйгенс был очень увлечен такими вот маятниками, увлечен настолько, что даже изобрел специальные часы с маятниковым механизмам, и часы эти были одними из самых точных для того времени.

Маятниковые часы Гюйгенса.

Появление подобного изобретения сослужило большую пользу физике, особенно в сфере физических экспериментов, где точное измерение времени является весьма важным фактором.

Но вернемся к маятнику, итак, в основе работы маятника лежат его колебания, которые можно выразить формулой, точнее следующим дифференциальным уравнением:

Где х (t) – неизвестная функция (это угол отклонения от нижнего положения равновесия в момент t, выраженный в радианах); w – положительная константа, которая определяется из параметров маятника (w = √ g/L, где g – это ускорение свободного падения, а L – длина математического маятника (подвес).

Помимо, собственно колебаний маятник может пребывать и в положении равновесия, при этом сила тяжести, действующая на него, будет уравновешиваться силой натяжения нити. Обычный плоский маятник, пребывающий на нерастяжимой нити, является системой с двумя степенями свободы. Но если, к примеру, нитку заменить на стержень, тогда наш маятник станет системой лишь с одной степенью свободы, так как его движения будут двухмерными, а не трехмерными.

Но если же наш маятник все-таки пребывает на нити и при этом совершает интенсивные колебания вверх-вниз, тогда механическая система приобретает устойчивое положение, именуемое «верх тормашками», еще ее называют маятником Капицы.

У маятника есть ряд интересных свойств, подтвержденных физическими законами. Так период колебаний всякого маятника зависит от таких факторов, как его размер, форма тела, расстояние между центром тяжести и точкой подвеса. Поэтому определение периода маятника является не простой задачей. А вот период математического маятника можно рассчитать точно по формуле, которая будет приведена ниже.

В ходе наблюдений за маятниками были выведены следующие закономерности:

  • Если к маятнику подвешивать разные грузы с разным весом, но при этом сохранять одинаковую длину маятника, то период его колебания будет одинаковым вне зависимости от массы груза.
  • Если при запуске колебаний отклонить маятник на не очень большие, но все же разные углы, то он станет колебаться в одинаковым период, но по разным амплитудам. Следовательно, период колебания у подобного маятника не зависит от амплитуды колебания, такое явление было названо изохронизмом, что с древнегреческого можно перевести как «хронос» — время, «изо» — равный, то есть «равновременный».

Период маятника – показатель, который представляет период собственно колебаний маятника, их длительность. Формулу периода математического маятника можно записать следующим образом.

Где L – длина нити математического маятника, g – ускорение свободного падения, а π – число Пи, математическая константа.

Период малых колебания математического маятника никак не зависит от массы маятника и амплитуды колебания, в этой ситуации он двигается как математический маятник с заданной длинной.

Вот мы добрались и до самого интересного, зачем нужен математический маятник и какое его применение на практике в жизни. В первую очередь ускорение математического маятника используется для геологоразведки, с его помощью ищут полезные ископаемые. Как это происходит? Дело в том, что ускорение свободного падения изменяется с географической широтой, так как плотность коры в разных местах нашей планеты далеко не одинакова и там где залегают породы с большей плотностью, ускорение будет немножко больше. А значит, просто подсчитав количество колебаний маятника можно отыскать в недрах Земли руду или каменный уголь, так как они имеют большую плотность, нежели другие рыхлые горные породы.

Также математическим маятником пользовались многие выдающиеся ученые прошлого, начиная с античности, в частности Архимед, Аристотель, Платон, Плутарх. Так Архимед и вовсе использовал математический маятник во всех своих вычислениях, а некоторые люди даже верили, что маятник может влиять на судьбы людей и пытались делать с его помощью предсказания будущего.

И в завершение образовательное видео по теме нашей статьи.

Возможно у Вас есть свои мнения на тему «Какое свойство маятника используются в часах»? Напишите об этом в комментариях.

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Adblock
detector